Respuesta :
Answer:
22.66% probability that the mean weight of the sample is less than 6.11 ounces.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this problem, we have that:
[tex]\mu = 6.13, \sigma = 0.15, n = 32, s = \frac{0.15}{\sqrt{32}} = 0.0265[/tex]
Find the probability that the mean weight of the sample is less than 6.11 ounces.
This is the pvalue of Z when X = 6.11.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{6.11 - 6.13}{0.0265}[/tex]
[tex]Z = -0.75[/tex]
[tex]Z = -0.75[/tex] has a pvalue of 0.2266
22.66% probability that the mean weight of the sample is less than 6.11 ounces.