We have 30 miles of fencing which can be used to enclose a rectangular piece of grazing land along a straight portion of a river. No fence is required along the river. The grazing land will be subdivided into two sections by means of a fence parallel to the sides and perpendicular to the river.
Write a function that expresses the total area in terms of the width x of the side of the grazing area perpendicular to the straight river.

Respuesta :

Answer:

The area of the gazing land is [tex]\frac{30x-x^2}2[/tex] square miles.

Step-by-step explanation:

Given that, 30 miles of fencing can be used to enclose a rectangular piece of grazing land along a straight piece of river.

Let the length of the rectangular piece of gazing which is along the river be y and the width of the  rectangular piece of gazing be x.

Along the river side, no fence is required.

Therefore total length of fence is = 2(x+y)-x

                                                        =2y+x

∴2y+x=30

⇒2y=30-x

[tex]\Rightarrow y=\frac{30-x}{2}[/tex]

The area of the rectangular piece of gazing is = Length×width

                                                                              =xy

                                                                              [tex]=x.\frac{30-x}2[/tex]

                                                                              [tex]=\frac{30x-x^2}2[/tex] square miles.