Determine if the following is mutually exclusive (Disjoint) or overlapping and then calculate the probability. A card is randomly selected from a standard deck of 52 playing cards. What is the probability that it is a 10 or a spade?

Respuesta :

Answer:

[tex]\frac{4}{13}[/tex]

Step-by-step explanation:

GIVEN: Determine if the following is mutually exclusive (Disjoint) or overlapping and then calculate the probability. A card is randomly selected from a standard deck of  [tex]52[/tex] playing cards.

TO FIND: What is the probability that it is a [tex]10[/tex] or a spade.

SOLUTION:

getting a [tex]10[/tex] and getting a spade are not disjoint events as both can occur simultaneously.

Now probability of getting a spade [tex]P(A)=\frac{\text{total spade cards}}{\text{total cards in deck}}[/tex]

                                                          [tex]=\frac{13}{52}=\frac{1}{4}[/tex]

probability of getting a [tex]10[/tex] [tex]P(B)=\frac{\text{total cards of 10}}{\text{total cards}}[/tex]

                                          [tex]=\frac{4}{52}=\frac{1}{13}[/tex]

probability of getting a [tex]10[/tex] and a spade [tex]P(A\cap B)=\frac{\text{total cards of spade that are 10}}{\text{total cards}}[/tex]

                                                                                [tex]=\frac{1}{52}[/tex]

probability of getting a [tex]10[/tex] or a spade[tex]=P(A)+P(B)-P(A\cap B)[/tex]

                                                           [tex]=\frac{1}{4}+\frac{1}{13}-\frac{1}{52}[/tex]

                                                          [tex]=\frac{4}{13}[/tex]

probability that it is a 10 or a spade is [tex]\frac{4}{13}[/tex]