Answer:
x is 10[tex]\sqrt{7}[/tex]
Step-by-step explanation:
Given that:
<=> 2[tex]x^{2}[/tex] + 4xh = 4200 cm2
<=> 4xh = 4200 - 2[tex]x^{2}[/tex]
<=> h = (4200 - 2[tex]x^{2}[/tex] )/4x
V = [tex]x^{2}[/tex] h
<=> V = [tex]x^{2}[/tex] (4200 - 2[tex]x^{2}[/tex] )/4x
<=> V = (4200x - 2[tex]x^{3}[/tex] )/4
dV/dx = (4200 - 6[tex]x^{2}[/tex] )/4
Set dV/dx = 0, we have:
4200 - 6[tex]x^{2}[/tex] =0
<=> [tex]x^{2}[/tex] = 700
<=> x = 10[tex]\sqrt{7}[/tex]
d²V/dx² = -12x/4
It is negative so the volume is maximum.
So x is 10[tex]\sqrt{7}[/tex]