Answer:
The moment of inertia of the system is 335.23 [tex]Kg. m^{2}[/tex]
Explanation:
Given:
Mass of disk [tex]M = 105[/tex] kg
Radius of disk [tex]R = 1.97[/tex] m
Mass of person [tex]m = 60.9[/tex] kg
Distance between person and axis of rotation [tex]r = 1.17[/tex] m
Mass of dog [tex]m' = 28.1[/tex] kg
Distance between dog and axis of rotation [tex]r' = 1.31[/tex] m
For finding moment of inertia of this system,
[tex]I = MR^{2}[/tex]
Where [tex]R =[/tex] Perpendicular distance between axis of rotation and object,
[tex]M =[/tex] mass of object.
[tex]I_{sys} = \frac{MR^{2} }{2} + mr^{2} + m'r' ^{2}[/tex]
[tex]I_{sys} = \frac{105 \times 3.88}{2} + 60.9 \times 1.368 + 28.1 \times 1.7161[/tex]
[tex]I_{sys} = 335.23[/tex] [tex]Kg . m^{2}[/tex]
Therefore, the moment of inertia of the system is 335.23 [tex]Kg. m^{2}[/tex]