The mean caloric intake of an adult male is 2800 with a standard deviation of 115. To verify this information, a sample of 25 men are selected and determined to have a mean caloric intake of 2950. Determine the 98% confidence interval for mean caloric intake of an adult male. Solution: Since n < 30, a t-test must be used. 2950 – qt(1.98/2,24)*115/sqrt(25) 2950 + qt(1.98/2,24)*115/sqrt(25) [2892.68, 3007.32] What is wrong with this solution?

Respuesta :

Answer:

Step-by-step explanation:

We would use the t- distribution.

From the information given,

Mean, μ = 2950

Standard deviation, σ = 115

number of sample, n = 25

Degree of freedom, (df) = 25 - 1 = 24

Alpha level,α = (1 - confidence level)/2

α = (1 - 0.98)/2 = 0.01

We will look at the t distribution table for values corresponding to (df) = 24 and α = 0.01

The corresponding z score is 2.492

We will apply the formula

Confidence interval

= mean ± z ×standard deviation/√n

It becomes

2950 ± 2.492 × 115/√25

= 2950 ± 2.492 × 23

= 2950 ± 57.316

The lower end of the confidence interval is 2950 - 57.316 =2892.68

The upper end of the confidence interval is 2950 + 57.316 = 3007.32

The solution is correct.

The confidence intervals express the distribution of sampling in a survey.

The 98% confidence interval is [tex]\mathbf{(2892.684,3007.316)}[/tex]

The given parameters are:

[tex]\mathbf{\mu = 2800}[/tex] --- the population mean

[tex]\mathbf{\bar x = 2950}[/tex] --- the sample mean

[tex]\mathbf{\sigma = 115}[/tex] -- the standard deviation

[tex]\mathbf{n = 25}[/tex] --- the sample size

Calculate the degrees of freedom

[tex]\mathbf{df = n - 1}[/tex]

[tex]\mathbf{df = 25 - 1}[/tex]

[tex]\mathbf{df = 24}[/tex]

Calculate the significance level

[tex]\mathbf{\alpha /2=\frac{1 - 98\%}2 = 0.01}[/tex]

The critical value at [tex]\mathbf{\alpha/2 = 0.01}[/tex]  and df = 24 is:

[tex]\mathbf{t_{\alpha/2} = 2.492}[/tex]

Calculate the margin of error

[tex]\mathbf{E = t_{\alpha/2} \frac{\sigma}{\sqrt n}}[/tex]

So, we have:

[tex]\mathbf{E = 2.492 \times \frac{115}{\sqrt{25}}}[/tex]

[tex]\mathbf{E = 2.492 \times \frac{115}{5}}[/tex]

[tex]\mathbf{E = 2.492 \times 23}[/tex]

[tex]\mathbf{E = 57.316}[/tex]

The confidence interval is then calculated as:

[tex]\mathbf{CI =\bar x \pm E}[/tex]

So, we have:

[tex]\mathbf{CI = 2950 \pm 57.316}}[/tex]

Split

[tex]\mathbf{CI = (2950 - 57.316,2950 + 57.316)}[/tex]

[tex]\mathbf{CI = (2892.684,3007.316)}[/tex]

So, the 98% confidence interval is [tex]\mathbf{(2892.684,3007.316)}[/tex]

Read more about confidence intervals and margin of errors at:

https://brainly.com/question/19426829