Respuesta :
Answer: Enthalpy of combustion (per mole) of [tex]C_4H_{10} (g)[/tex] is -2657.5 kJ
Explanation:
The chemical equation for the combustion of butane follows:
[tex]2C_4H_{10}(g)+4O_2(g)\rightarrow 8CO_2(g)+10H_2O(g)[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(8\times \Delta H^o_f_{CO_2(g)})+(10\times \Delta H^o_f_{H_2O(g)})]-[(1\times \Delta H^o_f_{C_4H_{10}(g)})+(4\times \Delta H^o_f_{O_2(g)})][/tex]
We are given:
[tex]\Delta H^o_f_{(C_4H_{10}(g))}=-125.6kJ/mol\\\Delta H^o_f_{(H_2O(g))}=-241.82kJ/mol\\\Delta H^o_f_{(O_2(g))}=0kJ/mol\\\Delta H^o_f_{(CO_2(g))}=-393.5kJ/mol\\\Delta H^o_{rxn}=?[/tex]
Putting values in above equation, we get:
[tex]\Delta H^o_{rxn}=[(8\times -393.5)+(10\times -241.82)]-[(2\times -125.6)+(4\times 0)]\\\\\Delta H^o_{rxn}=-5315kJ[/tex]
Enthalpy of combustion (per mole) of [tex]C_4H_{10} (g)[/tex] is -2657.5 kJ