Answer:
20 units
Step-by-step explanation:
In [tex] \triangle ABC[/tex], Points Q and R are midpoints of the sides AB and AC respectively.
Therefore, by mid-point formula:
[tex]RQ = \frac{1}{2} \times BC \\ \therefore \: 2p + 3 = \frac{1}{2} \times(6p - 4) \\ \therefore \: 2p + 3 = \frac{1}{2} \times2(3p - 2) \\ \therefore \: 2p + 3 = 3p - 2 \\ \therefore \: 2p - 3p = - 2 - 3\\ \therefore \: - p = - 5\\ \therefore \: \: \: \: \: p = 5\\ \\ \because AQ = 4p \\ \therefore \: AQ = 4 \times 5 \\ \huge \orange {\boxed {\therefore \: AQ = 20 \: units}} [/tex]