Respuesta :

Given:

The given expression is [tex]2\left(\frac{3}{4} x+7\right)-3\left(\frac{1}{2} x-5\right)[/tex]

We need to determine the equivalent expression.

Option A: -1

Solving the expression, we get;

[tex]\frac{3}{2} x+14-\frac{3}{2} x+15[/tex]

Simplifying, we get;

[tex]14+15=29[/tex]

Thus, the expression [tex]2\left(\frac{3}{4} x+7\right)-3\left(\frac{1}{2} x-5\right)[/tex] is not equivalent to -1.

Hence, Option A is not the correct answer.

Option B: 29

Solving the expression, we get;

[tex]\frac{3}{2} x+14-\frac{3}{2} x+15[/tex]

Simplifying, we get;

[tex]14+15=29[/tex]

Thus, the expression [tex]2\left(\frac{3}{4} x+7\right)-3\left(\frac{1}{2} x-5\right)[/tex] is equivalent to 29.

Hence, Option B is the correct answer.

Option C: [tex]2\left(\frac{3}{4} x+7\right)+(-3)\left[\frac{1}{2} x+(-5)\right][/tex]

Let us rewrite the given expression.

[tex]2\left(\frac{3}{4} x+7\right)+(-3)\left[\frac{1}{2} x+(-5)\right][/tex]

Thus, the expression [tex]2\left(\frac{3}{4} x+7\right)-3\left(\frac{1}{2} x-5\right)[/tex] is equivalent to [tex]2\left(\frac{3}{4} x+7\right)+(-3)\left[\frac{1}{2} x+(-5)\right][/tex]

Thus, Option C is the correct answer.

Option D: [tex]2\left(\frac{3}{4} x\right)+2(7)+3\left(\frac{1}{2} x\right)+3(-5)[/tex]

Rewriting the expression, we get;

[tex]2\left(\frac{3}{4} x+7\right)+(-3)\left[\frac{1}{2} x+(-5)\right][/tex]

Hence, the expression [tex]2\left(\frac{3}{4} x+7\right)-3\left(\frac{1}{2} x-5\right)[/tex] is equivalent not to [tex]2\left(\frac{3}{4} x\right)+2(7)+3\left(\frac{1}{2} x\right)+3(-5)[/tex]

Thus, Option D is not the correct answer.

Option E: [tex]2\left(\frac{3}{4} x\right)+2(7)+(-3)\left(\frac{1}{2} x\right)+(-3)(-5)[/tex]

Multiplying the terms within the bracket, we get;

[tex]2\left(\frac{3}{4} x\right)+2(7)+(-3)\left(\frac{1}{2} x\right)+(-3)(-5)[/tex]

Hence, the expression [tex]2\left(\frac{3}{4} x+7\right)-3\left(\frac{1}{2} x-5\right)[/tex] is equivalent to [tex]2\left(\frac{3}{4} x\right)+2(7)+(-3)\left(\frac{1}{2} x\right)+(-3)(-5)[/tex]

Thus, Option E is the correct answer.