Find the square roots of the two factors of square root of 36 and multiply them.

Is this answer the same as the answer you would get from directly finding the square root of 36? What does this finding show?

Respuesta :

Answer:

see explanation

Step-by-step explanation:

The factors of 36 which are perfect squares are 9 and 4, thus

[tex]\sqrt{9}[/tex] ×[tex]\sqrt{4}[/tex] = 3 × 2 = 6

[tex]\sqrt{36}[/tex] = 6

This confirms the radical rule

[tex]\sqrt{ab}[/tex] = [tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex]

That is

[tex]\sqrt{36}[/tex] = [tex]\sqrt{9(4)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{4}[/tex] = 3 × 2 = 6