In ΔTUV, the measure of ∠V=90°, the measure of ∠U=55°, and VT = 82 feet. Find the length of TU to the nearest tenth of a foot.

Respuesta :

Given:

Given that ΔTUV is a right triangle. The measure of ∠V=90°, the measure of ∠U=55°, and VT = 82 feet.

We need to determine the length of TU.

Length of TU:

The length of TU can be determined using the trigonometric ratio.

Thus, we have;

[tex]sin \ \theta=\frac{opp}{hyp}[/tex]

where [tex]\theta=55^{\circ}[/tex], [tex]opp=82[/tex] and [tex]hyp =TU[/tex]

Substituting the values, we get;

[tex]sin \ 55^{\circ}=\frac{82}{TU}[/tex]

Simplifying, we get;

[tex]TU=\frac{82}{sin \ 55^{\circ}}[/tex]

[tex]TU=\frac{82}{0.819}[/tex]

[tex]TU=100.12[/tex]

Rounding off to the nearest tenth, we get;

[tex]TU=100.1[/tex]

Thus, the length of TU is 100.1 feet.