Respuesta :
Answer:
The answer to your question is the letter A.
Step-by-step explanation:
Data
Center = (2, 3)
radius = 2
Process
1.- Find the equation of the line
(x - h)² + (y - k)² = r²
-Substitution
(x - 2)² + (y - 3)² = 2²
-Simplification
(x - 2)² + (y - 3)² = 4
-Evaluate the points in the equation
A. (4, 3)
(4 - 2)² + (3 - 3)² = 4
2² + 0 = 4
4 = 4 This point lies in the circle
B (-1, 0)
(-1 - 2)² + (0 - 3)² = 4
-3² + (-3)² = 4
9 + 9 = 4 This point is not part of the circle
C. (1, 3)
(1 - 2)² + (3 - 3)² = 4
(-1)² + (0)² = 4
1 = 4 This point is not part of the circle
D. (3, 4)
(3 - 2)² + (4 - 3)² = 4
1² + 1² = 4
2 = 4 This point is not part of the circle
Answer:
A. (4, 3)
Step-by-step explanation:
If the point (x, y) lies on a circle, then the distance between this point and the center is equal to the radius.
The formula of a distance between two points:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
We have the center in (2, 3) and the radius r = 2.
Check for
[tex]A.\ (4,\ 3)\\\\d=\sqrt{(4-2)^2+(3-3)^2}=\sqrt{2^2+0^2}=\sqrt{4+0}=\sqrt4=2\\\\\bold{CORRECT}\\\\B.\ (-1,\ 0)\\\\d=\sqrt{(-1-2)^2+(0-3)^2}=\sqrt{(-3)^2+(-3)^2}=\sqrt{9+9}=\sqrt{18}\neq2\\\\C.\ (1,\ 3)\\\\d=\sqrt{(1-2)^2+(3-3)^2}=\sqrt{(-1)^2+0^2}=\sqrt{1+0}=\sqrt{1}=1\neq2\\\\D.\ (3,\ 4)\\\\d=\sqrt{(3-2)^2+(4-3)^2}=\sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt2\neq2[/tex]