Respuesta :

Given:

The composite figure consists of a rectangle and a hemisphere.

The length of the rectangle is 11 mm.

The width of the rectangle is 9 mm.

The height of the rectangle is 6 mm.

We need to determine the volume of the composite figure.

Volume of the rectangle:

The volume of the rectangle can be determined using the formula,

[tex]V=length \times width \times height[/tex]

Substituting the values, we get;

[tex]V=11 \times 9 \times 6[/tex]

[tex]V=594 \ mm^3[/tex]

Thus, the volume of the rectangle is 594 mm³

Volume of the half of the cylinder:

The volume of the half of the cylinder is given by the formula,

[tex]V=\frac{\pi r^2 h}{2}[/tex]

Radius of the cylinder = [tex]\frac{9}{2}=4.5[/tex]

Height of the cylinder = 11 mm

Substituting the values, we get;

[tex]V=\frac{(3.14)(4.5)^2(11)}{2}[/tex]

[tex]V=\frac{699.435}{2}[/tex]

[tex]V=349.72[/tex]

Thus,the volume of the half of the cylinder is 349.72 mm³

Volume of the composite figure:

The volume of the composite figure can be determined by adding the volume of the rectangle and the volume of the half of the cylinder.

Thus, we have;

Volume = Volume of rectangle + Volume of half of the cylinder

Substituting the values, we get;

[tex]Volume = 594+349.72[/tex]

[tex]Volume = 943.72[/tex]

Rounding off to the nearest whole number, we get;

[tex]Volume = 944 \ mm^3[/tex]

Thus, the volume of the composite figure is 944 mm³

Hence, Option d is the correct answer.