For number 1 (option A), the theoretical probability equal the experimental probability.
Step-by-step explanation:
The given is,
Ms.McClain conducted an experiment with a 6- sided number cube
Step:1
For theoretical probability,
[tex]P(number) _{T} = \frac{Number of favorable outcomes}{Total number of outcomes}[/tex] × [tex]No.of times[/tex]
For Number 1,
[tex]P(1) _{T} = \frac{1}{6} (48)[/tex]
= (0.1667)(48)
[tex]P(1)_{T}[/tex] = 8
For Number 2,
[tex]P(2) _{T} = \frac{1}{6} (48)[/tex]
= (0.1667)(48)
[tex]P(2)_{T}[/tex] = 8
For Number 3,
[tex]P(3)_{T} = \frac{1}{6} (48)[/tex]
= (0.1667)(48)
[tex]P(3)_{T}[/tex] = 8
For Number 4,
[tex]P(4)_{T} = \frac{1}{6} (48)[/tex]
= (0.1667)(48)
[tex]P(4)_{T}[/tex] = 8
For Number 5,
[tex]P(5) _{T} = \frac{1}{6} (48)[/tex]
= (0.1667)(48)
[tex]P(5)_{T}[/tex] = 8
For Number 6,
[tex]P(6) _{T} = \frac{1}{6} (48)[/tex]
= (0.1667)(48)
[tex]P(6)_{T}[/tex] = 8
Step:2
Experimental probability from table,
[tex]P(1) _{E} =8[/tex]
[tex]P(2) _{E} =10[/tex]
[tex]P(3) _{E} =7[/tex]
[tex]P(4) _{E} =6[/tex]
[tex]P(5) _{E} =9[/tex]
[tex]P(6) _{E} =8[/tex]
Step:3
In compare with theoretical probability and experimental probability the number 1 and 6 are equal.
From the given options the number 1 is selected.
Result:
For number 1 (option A), the theoretical probability equal the experimental probability.