Respuesta :

Given:

Given that AB is a tangent to circle C.

The length of AB is (2r -1)

The length of AC is (r + 1) + r

The length of BC is r.

We need to determine the circumference of the circle C.

Value of r:

The value of r can be determined using the Pythagorean theorem.

Thus, we have;

[tex]AC^2=AB^2+BC^2[/tex]

Substituting the values, we have;

[tex][(r+1)+r]^2=(2r-1)^2+r^2[/tex]

Simplifying, we have;

[tex](2r+1)^2=(2r-1)^2+r^2[/tex]

Expanding the terms, we get;

[tex]4r^2+4r+1=4r^2-4r+1+r^2[/tex]

[tex]4r^2+4r+1=5r^2-4r+1[/tex]

Simplifying the values, we have;

[tex]4r=-4r+r^2[/tex]

Adding both sides of the equation by 4r, we get;

[tex]8r=r^2[/tex]

 [tex]0=r^2-8r[/tex]

 [tex]0=r(r-8)[/tex]

Thus, [tex]r=0 \ or \ r=8[/tex]

Since, the radius of the circle cannot be 0.

Hence, the radius of the circle is 8.

Circumference of the circle:

The circumference of the circle can be determined using the formula,

[tex]C=2 \pi r[/tex]

Substituting r = 8, we get;

[tex]C=2 \pi (8)[/tex]

[tex]C=16 \pi[/tex]

Thus, the circumference of the circle is 16π

Hence, Option A is the correct answer.