Respuesta :

Given:

Composite figure made of cylinder and two spheres.

To find:

The volume of the composite solid

Solution:

Radius = 2 in

The value of π = 3.14

Volume of sphere:

[tex]$V=\frac{4}{3} \pi r^3[/tex]

[tex]$V=\frac{4}{3} \times 3.14 \times 2^3[/tex]

[tex]$V=\frac{4}{3} \times 3.14 \times 8[/tex]

[tex]V=33.49[/tex]

Volume of a sphere is 33.49 in³

Volume of two spheres = 2 × 33.49 = 66.98 in³

Radius of cylinder = 2 in

Height of cylinder = 8 - 2 - 2 = 4 in

Volume of cylinder:

[tex]$V=\pi r^2 h[/tex]

V = 3.14 × 2² × 4

V = 50.24

Volume of cylinder = 50.24 in³

Volume of composite solid = Volume of two spheres + Volume of cylinder

                                             = 66.98 in³ + 50.24 in³

                                             = 117.2 in³

The volume of the composite solid is 117.2 in³.