Use the given information to find

​(a) sine (s plus t )sin(s+t)​, ​
(b) tangent (s plus t )tan(s+t)​, and
​(c) the quadrant of splus+t. sine s equals one seventhsins= 1 7 and sine t equals negative four seventhssint=− 4 7​, s in quadrant II and t in quadrant IV

Respuesta :

Answer:

This will guide you through

Step-by-step explanation:

Ver imagen akindeleot

Answer:

(A). 0.6828

(B). 0.9346

(C). sin (s + t) lies in the first quadrant

Step-by-step explanation:

hello,

i will use

[tex]\sin \ s= \frac{1}{7}\\\sin \ t =\frac{4}{7}[/tex]

where S and t are in the third and fourth quadrant respectively.

next we find the value of cos s and cos t.

please recall that

cos x = ±[tex]\sqrt{1-\sin^{2} x }[/tex]

thus we have ;

cos s = ±[tex]\sqrt{1-\sin s}[/tex]

cos s  = ±[tex]\sqrt{1- (\frac{1}{7})^{2} }[/tex]

cos s    = ±[tex]\sqrt{\frac{49}{49} -\frac{1}{49} }[/tex]

cos s     = ±[tex]\sqrt{\frac{48}{49} }[/tex]

since s is in the second quadrant, we choose the negative.

cos s = -[tex]\sqrt{\frac{48}{49} }[/tex]

next we find cos t using the same method

cos t = ±[tex]\sqrt{1- \sin ^2 t}[/tex]

cos t =±[tex]\sqrt{1- (\frac{-4}{7})^2 }[/tex]

cos t = ±[tex]\sqrt{\frac{49}{49} - \frac{16}{49} }[/tex]

cos t = ±[tex]\sqrt{\frac{33}{49} }[/tex]

since t is in the fourth quadrant, we choose the positive.

cos t = [tex]\sqrt{\frac{33}{49} }[/tex]

please recall the trigonometric identity

(A)  sin(A+B) = sin A cos B + sin B cos A

sin(S + t)  = sin S cos t + sin t cos S

sin(S + t)  =[tex]\frac{1}{7} \sqrt{\frac{33}{49} } \ + (-\frac{4}{7} ) (-\sqrt{\frac{48}{49} } )[/tex]

    sin(S + t)   = [tex]\frac{\sqrt{33} }{49} \ + \frac{4\sqrt{48} }{49}[/tex]

   sin(S + t)     = [tex]\frac{\sqrt{33} \ + 4\sqrt{48} }{49}[/tex]

                      = 0.6828

(B) please recall the trigonometric identity

[tex]\tan (A+B) = \frac{tan A\ + \ tan B }{1- tan Atan B}[/tex]        (1)

[tex]\tan x = \frac{\sin x}{\cos x}[/tex]

thus

[tex]\tan s = \frac{\frac{1}{7} }{-\frac{\sqrt{48} }{7} } = -\frac{1}{\sqrt{48} }[/tex]

[tex]\tan t = \frac{-\frac{4}{7} }{{\frac{\sqrt{33} }{7} } } =-\frac{4}{\sqrt{33} }[/tex]

applying (1) above we have

[tex]\tan (s + t) = \frac{-\frac{1}{\sqrt{48} } -\frac{4}{\sqrt{33} } }{1- (-\frac{1}{\sqrt{48} }) (-\frac{4}{33} )}[/tex]

                = 0.9346

(c)  sin (s + t) lies in the first quadrant because its value is a positive number and sine is positive in the first or second quadrant.