Respuesta :
[tex]-3;-12;-48;-192;...\\\\It's\ the\ geometric\ sequence:a_n=a_1r^{n-1}\\\\a_1=-3;\ a_2=-12\\\\r=a_2:a_1\to r=-12:(-3)=4\\\\\boxed{a_n=-3\cdot4^{n-1}}\to\fbox{b.}[/tex]
Answer:
b) [tex]a_{n} = (-3)4^{n-1}[/tex].
Step-by-step explanation:
Given : -3, -12, -48, -192, ...
To find : find an equation for the nth term of the sequence.
Solution : We have given -3, -12, -48, -192, ...
Nth term of geometric sequence = [tex]a_{n} = a_{1}r^{n-1}[/tex].
Where, [tex]a_{n}= nth terms[/tex].
[tex]a_{1}= first term[/tex].
r = common ratio.
r = [tex]\frac{second term}{first term}[/tex]
r = [tex]\frac{-12}{-3}[/tex] .
r = 4.
[tex]a_{n} = (-3)4^{n-1}[/tex].
Therefore,b) [tex]a_{n} = (-3)4^{n-1}[/tex].