Respuesta :
T k = 15 + 273 = 288 K
4.6 / 13 => 0.353 atm
0.50 / 0.10 => 5 L
(15 + 273) K x (13 atm / 7.6 atm) x (0.50 L / 0.10 L)
= 2463.15 K
hope this helps!
4.6 / 13 => 0.353 atm
0.50 / 0.10 => 5 L
(15 + 273) K x (13 atm / 7.6 atm) x (0.50 L / 0.10 L)
= 2463.15 K
hope this helps!
Answer:
98.53K or 174.47°C
Explanation:
Initial Pressure, P1 = 7.6atm
Final Pressure, P2 = 13atm
Initial Volume, V1 = 0.50L
Final Volume, V2 = 0.10L
Initial Temperature, T1 = 15 +273 = 288K (Converting to kelvin temperature)
Final Temperature, T2 = ?
The equation relating all these parameters id the ideal gas equation.
This is given as;
(P1V1) / T1 = (P2V2) / T2
Upon solving for T2, we have;
T2 = P2V2T1 / PIV1
Inserting the values,
T2 = (13 * 0.10 * 288) / (7.6 * 0.5)
T2 = 374.4 / 3.8
T2 = 98.53K or 174.47°C