A right rectangular prism has these dimensions:

Length − Fraction 1 and 1 over 3 units
Width − Fraction 5 over 6 unit
Height − Fraction 2 over 3 unit

How many cubes of side length 1 over 6 unit are required to completely pack the prism without any gap or overlap?

Respuesta :

Volume of rectangular prism = 1 1/3 x 5/6 x 2/3 = 4/3 x 5/6 x 2/3 = 20/27

Volume of cube = 1/6 x 1/6 x 1/6 = 1/216

Number of cubes that will pack the rectangular prism = 20/27 / 1/216 = 160

Answer:

The number of cubes required is [tex]160[/tex].

Step-by-step explanation:

The dimensions of the right rectangular prisms are

[tex]l=1\frac{1}{3} \;units[/tex]

[tex]w=\frac{5}{6} \;units[/tex]

[tex]h=\frac{2}{3} \;units[/tex]


The volume of the right rectangular prism is

[tex]V=l\times b\times h[/tex].

We substitute the dimensions to get,

[tex]V=1\frac{1}{3}\times \frac{5}{6}\times \frac{2}{3}[/tex].


We convert the first mixed number to improper fraction,

[tex]V=\frac{4}{3}\times \frac{5}{6}\times \frac{2}{3}[/tex].


We multiply out to obtain,

[tex]V=\frac{40}{54}[/tex]


[tex]V=\frac{20}{27}[/tex] cubic units.



We need to determine the volume of the cube of side length,

[tex]l=\frac{1}{6}[/tex] units.


The volume of a cube is given by,

[tex]V=l^3[/tex]

This implies that,

[tex]V=(\frac{1}{6})^3[/tex]


This gives us,

[tex]V=\frac{1}{216}[/tex] cubic units.


We now divide the volume of the right rectangular prism by the volume of the cube to determine the number of cubes required.


[tex]Number\:of\:cubes=\frac{\frac{20}{27} }{\frac{1}{216} }[/tex]


We simplify to get,

[tex]Number\:of\:cubes=\frac{20}{27} \div \frac{1}{216}[/tex]


This implies that,

[tex]Number\:of\:cubes=\frac{20}{27} \times \frac{216}{1}[/tex]


[tex]Number\:of\:cubes=20\times8[/tex]


[tex]Number\:of\:cubes=160[/tex]