Respuesta :

[tex]\cot x\sec^4 x=\cot x+2\tan x+\tan^3x\\\\L=\dfrac{\cos x}{\sin x}\cdot\dfrac{1}{\cos^4x}=\dfrac{1}{\sin x}\cdot\dfrac{1}{\cos^3x}=\dfrac{1}{\sin x\cos^3x}\\\\R=\dfrac{\cos x}{\sin x}+2\cdot\dfrac{\sin x}{\cos x}+\dfrac{\sin^3x}{\cos^3x}\\\\=\dfrac{\cos x\cos^3x}{\sin x\cos^3x}+\dfrac{2\sin x\cos^2x}{\cos x\sin x\cos^2x}+\dfrac{\sin^3x\sin x}{\cos^3x\sin x}\\\\=\dfrac{\cos^4x+2\sin^2x\cos^2x+\sin^4x}{\sin x\cos^3x}\\\\=\dfrac{(\cos^2x)^2+2\sin^2x\cos^2x+(\sin^2x)^2}{\sin x\cos^3x}[/tex]

[tex]=\dfrac{(\cos^2x+\sin^2x)^2}{\sin x\cos^3x}=\dfrac{1}{\sin x\cos^3x}=L\\\\Used:\\\tan(a)=\dfrac{\sin(a)}{\cos(a)}\\\cot(a)=\dfrac{\cos(a)}{\sin(a)}\\\sec(a)=\dfrac{1}{\cos(a)}\\\sin^2a+\cos^2a=1\\(a+b)^2=a^2+2ab+b^2[/tex]