Respuesta :
[tex]\dfrac{3x+y}{y}=\dfrac{5}{6}\\\\\dfrac{3x}{y}+\dfrac{y}{y}=\dfrac{5}{6}\\\\3\cdot\dfrac{x}{y}+1=\dfrac{5}{6}\ \ \ |subrtact\ 1\ from\ both\ sides\\\\3\cdot\dfrac{x}{y}=-\dfrac{1}{6}\ \ \ |divide\ both\ sides\ by\ 3\\\\\boxed{\dfrac{x}{y}=-\dfrac{1}{18}}[/tex]
We are given with the equation (3x+y)/ y = 6/5 where we are asked to determine the ratio of x/y. First step is to multiply the equation by y to get an equation 3x + y = 6y /5. We transpose y to the right side to get 3 x = y / 5. Hence, x/ y should be equal to 1/15.