Respuesta :

Answer: (-3,19)

Step-by-step explanation:

Here the given function is,

[tex]y = -2x^2-12x+1[/tex]

[tex]\implies y = -2(x^2+6x)+1[/tex]

[tex]\implies y = -2(x^2+6x)+1+18-18[/tex]

[tex]\implies y = -2(x^2+6x+9)+19[/tex]

[tex]\implies y = -2(x+3)^2+19[/tex]

[tex]\implies y = -2(x-(-3))^2+19[/tex]

Since, the standard equation of a quadratic function is [tex]y = a(x - h)^2 + k[/tex]

Where (h,k) is the vertex of the function.

On comparing the equation of given function with this standard form,

We get, the vertex of the given function is (-3,19)

⇒ First option is correct.