Respuesta :

well, the formula is: (a-b)(a^2+ab+b^2)therefore the answer would be: (x-3)(x^2+3x+9)hope this helps

The factor of the expression is [tex](x-3)\left(x^{2}+3 x+9\right)$[/tex].

Factors

Given:

[tex]x^{3}-27$[/tex]

Rewrite 27 as [tex]$3^{3}$[/tex]

then, we get [tex]x^{3}-3^{3}$[/tex]

Since both terms are perfect cubes, factor using the difference of cubes formula, we get

[tex]$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$[/tex]

where a = x and b

[tex]&(x-3)\left(x^{2}+x \cdot 3+3^{2}\right)[/tex]

Simplifying the given equation as,

Move 3 to the left of x.

[tex](x-3)\left(x^{2}+3 x+3^{2}\right)$[/tex]

Raise 3 to the power of 2.

[tex](x-3)\left(x^{2}+3 x+9\right)$[/tex]

Therefore, the factor of the expression is

[tex](x-3)\left(x^{2}+3 x+9\right)$[/tex].

To learn more about factors

https://brainly.com/question/8493119

#SPJ2