Find the exact value of csc (theta) for an angle (theta) with cos (theta) = -2/5 and with its terminal side in Quadrant II.

a. sqrt(21)/5

b. -5/2

c. -2/5

d. 5/sqrt(21)

Respuesta :

Answer:

[tex]\frac{5}{\sqrt{21}}[/tex].

Step-by-step explanation:

We are given [tex]\cos(\theta)=\frac{-2}{5}[/tex] and that [tex]\theta[/tex]'s angle terminates in quadrant 2 which means [tex](\cos(\theta)=\text{negative},\sin(\theta)=\text{positive})[/tex].

We will be using Pythagorean Identity: [tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex].

[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]

[tex]\sin^2(\theta)+(\frac{-2}{5})^2=1[/tex]

[tex]\sin^2(\theta)+\frac{4}{25}=1[/tex]

[tex]\sin^2(\theta)=1-\frac{4}{25}[/tex]

[tex]\sin^2(\theta)=\frac{25-4}{25}[/tex]

[tex]\sin^2(\theta)=\frac{21}{25}[/tex]

[tex]\sin(\theta)=\pm \sqrt{\frac{21}{25}}[/tex]

[tex]\sin(\theta)=\pm \frac{\sqrt{21}}{5}[/tex]

Since again [tex]\theta[/tex]'s angle terimates in quadrant 2, we will choose that [tex]\sin(\theta)=\frac{\sqrt{21}}{5}[/tex].

[tex]\csc(\theta)=\frac{1}{\sin(\theta)}=\frac{5}{\sqrt{21}}[/tex].

Answer:

d

Step-by-step explanation:

Cosec theta = 1/sin(theta)

Cos²theta + Sin²theta = 1

Sin²theta = 1 - (-⅖)² = 21/25

Sin theta = sqrt(21)/5

Positive because Quadrant 2

Cosec theta = 5/sqrt(21)