Answer:
22.11%
Step-by-step explanation:
First, use the Pythagorean theorem to determine the length of [tex](c^2)[/tex], which in this case is [tex]\sqrt{65} , -\sqrt{65}[/tex]. Then, find the remaining space by calculating the empty space.
On the left:
[tex]3^{2} +10^{2} =x^{2} \\\\x= \sqrt{109},-\sqrt{109}[/tex]
On the right:
[tex]6^2+10^2=x^2\\x= 2\sqrt{34}, -2\sqrt{34}[/tex]
Then, [tex](2\sqrt{34} +\sqrt{109}) - 100[/tex]
Approximate decimal form is -77.89 (or 77.89)
Therefore, the shaded area is [tex]100-77.89 = 22.11[/tex]