Respuesta :

Step-by-step explanation:

In the given circle

[tex] BC \cong BD [/tex] (Radii of same circle)

[tex] \angle BDC \cong \angle BCD.... (1)\\[/tex]

(angles opposite to congruent sides are congruent)

[tex] \angle ABC[/tex] is exterior angle of [tex] \triangle BDC[/tex]

[tex] m\angle ABC= m\angle BDC +m\angle BCD\\

\therefore 124°= m\angle BDC+m\angle BDC\\.. [from\:(1)] \\

\therefore 124°= 2m\angle BDC\\\\

\therefore m\angle BDC= \frac{124°}{2}\\\\

\therefore m\angle BDC= 62°\\

\huge \pink {\boxed {\therefore m\angle ADC= 62°}} \\.. (\because A-B-D) \\

[/tex]