Answer:
D.
[tex]( - \frac{5}{13} , - \frac{12}{13} )[/tex]
Step-by-step explanation:
From the given information we have :
[tex] \cos(x) = \frac{5}{13} [/tex]
and
[tex] \sin(x) = \frac{12}{13} [/tex]
Now we need to find :
[tex] \cos(x + \pi) \: and \: \sin(x + \pi) [/tex]
We make use of trigonometric identities.
[tex] \cos(x + \pi) = - \cos(x) [/tex]
This implies that:
[tex]\cos(x + \pi) = - \frac{5}{13} [/tex]
[tex]\sin(x + \pi) = - \sin(x) [/tex]
[tex]\sin(x + \pi) = - \frac{12}{13} [/tex]
The correct choice is:
[tex]( - \frac{5}{13} , - \frac{12}{13} )[/tex]