Determine what shape is formed for the given coordinates for ABCD, and then find the perimeter and area as an exact value and rounded to the nearest tenth.
(help)

Determine what shape is formed for the given coordinates for ABCD and then find the perimeter and area as an exact value and rounded to the nearest tenth help class=

Respuesta :

Answer:

Part 1) The shape is a trapezoid

Part 2) The perimeter is [tex]25(4+\sqrt{2})\ units[/tex]   or approximately  [tex]135.4\ units[/tex]

Part 3) The area is [tex]937.5\ units^2[/tex]

Step-by-step explanation:

step 1

Plot the figure to better understand the problem

we have

A(-28,2),B(-21,-22),C(27,-8),D(-4,9)

using a graphing tool

The shape is a trapezoid

see the attached figure

step 2

Find the perimeter

we know that

The perimeter of the trapezoid is equal to

[tex]P=AB+BC+CD+AD[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance AB

we have

A(-28,2),B(-21,-22)

substitute in the formula

[tex]d=\sqrt{(-22-2)^{2}+(-21+28)^{2}}[/tex]

[tex]d=\sqrt{(-24)^{2}+(7)^{2}}[/tex]

[tex]d=\sqrt{625}[/tex]

[tex]d_A_B=25\ units[/tex]

Find the distance BC

we have

B(-21,-22),C(27,-8)

substitute in the formula

[tex]d=\sqrt{(-8+22)^{2}+(27+21)^{2}}[/tex]

[tex]d=\sqrt{(14)^{2}+(48)^{2}}[/tex]

[tex]d=\sqrt{2,500}[/tex]

[tex]d_B_C=50\ units[/tex]

Find the distance CD

we have

C(27,-8),D(-4,9)

substitute in the formula

[tex]d=\sqrt{(9+8)^{2}+(-4-27)^{2}}[/tex]

[tex]d=\sqrt{(17)^{2}+(-31)^{2}}[/tex]

[tex]d=\sqrt{1,250}[/tex]

[tex]d_C_D=25\sqrt{2}\ units[/tex]

Find the distance AD

we have

A(-28,2),D(-4,9)

substitute in the formula

[tex]d=\sqrt{(9-2)^{2}+(-4+28)^{2}}[/tex]

[tex]d=\sqrt{(7)^{2}+(24)^{2}}[/tex]

[tex]d=\sqrt{625}[/tex]

[tex]d_A_D=25\ units[/tex]

Find the perimeter

[tex]P=25+50+25\sqrt{2}+25[/tex]

[tex]P=(100+25\sqrt{2})\ units[/tex]

simplify

[tex]P=25(4+\sqrt{2})\ units[/tex] ----> exact value

[tex]P=135.4\ units[/tex]

therefore

The perimeter is [tex]25(4+\sqrt{2})\ units[/tex]   or approximately  [tex]135.4\ units[/tex]

step 3

Find the area

The area of trapezoid is equal to

[tex]A=\frac{1}{2}[BC+AD]AB[/tex]

substitute the given values

[tex]A=\frac{1}{2}[50+25]25=937.5\ units^2[/tex]

Ver imagen calculista