The points A(2,1), B(3,6), C(5,-2) and D (1,-2) are the vertices of a parallelogram.fine |AC| and |BD|.are they equal in length?

Respuesta :

Answer:

|AC| =√18   and  |BD| =√68.   They are not equal in length.

Step-by-step explanation:

To find |AC| and |BD|  of the parallelogram, we will simply use the distance formula.

Using the line distance formula;

D = √([tex]y_{2}[/tex]-[tex]y_{1}[/tex])² + ([tex]x_{2}[/tex]-[tex]x_{1}[/tex])²

A(2,1)     C(5,-2)

[tex]x_{1}[/tex] =2    [tex]y_{1}[/tex]=1   [tex]x_{2}[/tex] = 5   [tex]y_{2}[/tex] =-2

|AC|  = √([tex]y_{2}[/tex]-[tex]y_{1}[/tex])² + ([tex]x_{2}[/tex]-[tex]x_{1}[/tex])²

          =√(-2-1)² + (5-2)²

           =√(-3)² + (3)²

           =√9+9

            =√18

Distance  |AC| =√18

B(3,6)     D (1,-2)

[tex]x_{1}[/tex] =3    [tex]y_{1}[/tex]=6   [tex]x_{2}[/tex] = 1   [tex]y_{2}[/tex] =-2

|BD|  = √([tex]y_{2}[/tex]-[tex]y_{1}[/tex])² + ([tex]x_{2}[/tex]-[tex]x_{1}[/tex])²

          =√(-2-6)² + (1-3)²

           =√(-8)² + (-2)²

           =√64+4

            =√68

Distance  |BD| =√68

|AC|   and   |BD|   are not equal in length