Respuesta :

Answer:

see explanation

Step-by-step explanation:

Calculate both AB and BC using the distance formula

d = √ (x₂ - x₁ )² + (y₂ - y₁ )²

with (x₁, y₁ ) = A(1, 1) and (x₂, y₂ ) = B(3, 6)

AB = [tex]\sqrt{(3-1)^2+(6-1)^2}[/tex]

     = [tex]\sqrt{2^2+5^2}[/tex]

     = [tex]\sqrt{4+25}[/tex] = [tex]\sqrt{29}[/tex]

Repeat the process with

(x₁, y₁ ) = B(3, 6) and (x₂, y₂ ) = C(5, 1)

BC = [tex]\sqrt{(5-3)^2+(1-6)^2}[/tex]

     = [tex]\sqrt{2^2+(-5)^2}[/tex]

     = [tex]\sqrt{4+25}[/tex] = [tex]\sqrt{29}[/tex]

Thus |AB | = |BC | = [tex]\sqrt{29}[/tex]

Answer:

explained

Step-by-step explanation:

Calculate both AB and BC using the distance formula

d = √ (x₂ - x₁ )² + (y₂ - y₁ )²

with (x₁, y₁ ) = A(1, 1) and (x₂, y₂ ) = B(3, 6)

AB =  

    =  

    =  =  

Repeat the process with

(x₁, y₁ ) = B(3, 6) and (x₂, y₂ ) = C(5, 1)

BC =  

    =  

    =  =  

Thus |AB | = |BC | =