contestada

*SAT QUESTION*

In triangle ABC, the measure of ∠B is 90°, BC=16, and AC=20. Triangle DEF is similar to triangle ABC, where vertices D, E, and F correspond to vertices A, B, and C, respectively, and each side of triangle DEF is [tex]\frac{1}{3}[/tex] the length of the corresponding side of triangle ABC. What is the value of sinF?

Respuesta :

Answer and Explanation:

[tex]Greetings![/tex]

[tex]Let's~answer~your~question![/tex]

[tex]Triangle~ ABC ~is ~a ~right~ triangle~ with ~its~ right~ angle ~at ~B. ~Therefore,~AC\\is~ the~ hypotenuse~ of~ right~ triangle~ ABC,~ and~ AB ~and ~BC ~are~ the~ legs~ of~ right~\\ triangle ~ABC.[/tex]

[tex]According~ to~ the~ Pythagorean ~theorem,[/tex]

[tex]AB=\sqrt{20^2-16^2}=\sqrt{400-256}=\sqrt{144}=12[/tex]

[tex]Since ~triangle~DE[/tex][tex]F~is ~similar~ to~ triangle~ ABC,~ with~ vertex ~F ~corresponding~to~ vertex~ C,~ the~ measure\\ of~angle~ \angle F~equals~ the~ measure~ of~ angle~\angle C.[/tex]

[tex]Therefore,~ sinF=sinC. ~From ~the~ side~ lengths~ of ~triangle~ ABC,[/tex]

[tex]sinF=\frac{opposite ~side}{hypotenuse} =\frac{AB}{AC} =\frac{12}{20}=\frac{3}{5}[/tex]

[tex]Therfore, ~sinF=\frac{3}{5}~or~0.6[/tex]

Answer:

0.6

Explanation:

Angle F corresponds to Angle C

sinF = sinC

AC² = AB² + BC²

20² = AB² + 16²

AB² = 400 - 256

AB² = 144

AB = 12

sinC = AB/AC

sinC = 12/20

sinF = 0.6