Identify the pair of lines as parallel or perpendicular.
1. f(x) = 2x + 3
g(x) = -1/2x + 3

2. f(x) = 1/3x + 4
g(x) = 1/3x + 5

Respuesta :

Answer:

1.  Perpendicular

2.  Parallel

Step-by-step explanation:

A line is parallel to another if it has the same slope

A line is perpendicular to another if it has the opposite reciprocal of the other slope.

1.  f(x) = 2x + 3

   f(xx) = -1/2 + 3

Perpendicular

2.  f(x) = 1/3x + 4

    g(x) = 1/3x + 5

Parallel

gmany

Answer:

1. perpendicular

2. parallel

Step-by-step explanation:

[tex]\text{Let}\\\\k:y=m_1x+b_1;\ l:y=m_2x+b_2\\\\\text{then}\\\\k\ \perp\ l\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}\\\\k\ ||\ l\iff m_1=m_2[/tex]

[tex]1.\\f(x)=2x+3\to m_1=2\\\\g(x)=-\dfrac{1}{2}x+3\to m_2=-\dfrac{1}{2}\\\\m_1\neq m_2\\\\m_1m_2=(2)\left(-\dfrac{1}{2}\right)=-\dfrac{2}{2}=-1\\\\Answer:\ \text{lines are perpendicular}[/tex]

[tex]2.\\f(x)=\dfrac{1}{3}x+4\to m_1=\dfrac{1}{3}\\\\g(x)=\dfrac{1}{3}x+5\to m_2=\dfrac{1}{3}\\\\m_1=m_2\\\\Answer:\ \text{lines are parallel}[/tex]