Respuesta :
The value of [tex]a[b(x)][/tex] is [tex]3x-39[/tex]
Explanation:
Given that the functions [tex]a(x)=3x-12[/tex] and [tex]b(x)=x-9[/tex]
We need to determine the value of [tex]a[b(x)][/tex]
The value of [tex]a[b(x)][/tex] can be determined by substituting [tex]x=x-9[/tex] in the function [tex]a(x)=3x-12[/tex]
Thus, we have,
[tex]a[b(x)]=a(x-9)[/tex]
Let us substitute the value [tex]x=x-9[/tex] in the function [tex]a(x)=3x-12[/tex]
Substituting [tex]x=x-9[/tex] in the function [tex]a(x)=3x-12[/tex] , we get,
[tex]a[b(x)]=3(x-9)-12[/tex]
Multiplying the terms, we get,
[tex]a[b(x)]=3x-27-12[/tex]
Adding the like terms, we have,
[tex]a[b(x)]=3x-39[/tex]
Thus, the value of [tex]a[b(x)][/tex] is [tex]3x-39[/tex]
Answer:
3x - 39
Step-by-step explanation:
a(b(x)) = 3b(x) - 12
= 3(x - 9) - 12
= 3x - 27 - 12
= 3x - 39