Answer:
a) 0.3495
b) (9.65, 10.35)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = 10 hours
Sample size, n = 64
Alpha, α = 0.02
Population standard deviation, σ = 1.2 hours
a) Margin of error
Formula
[tex]z_{critical}\dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]z_{critical}\text{ at}~\alpha_{0.02} = \pm 2.33[/tex]
Putting values, we get,
[tex]M.E = (2.33)\dfrac{1.2}{\sqrt{64}} = 0.3495[/tex]
b) the sample mean is 10 hours, then the 98% confidence interval
[tex]\mu \pm z_{critical}\frac{\sigma}{\sqrt{n}}[/tex]
[tex]\bar{x} \pm M.E[/tex]
Putting the values, we get,
[tex]10\pm 0.3495\\=(9.6505, 10.3495)\\\approx (9.65, 10.35)[/tex]