Respuesta :

Option A: 4 is the length of PE

Explanation:

Given that PA=6, PD=4, and BE=5

We need to determine the length of PE

The length of PE can be determined using the intersecting secant tangent theorem.

Applying the secant tangent theorem, we get,

[tex]PA^2=(BE+PE)(PE)[/tex]

Substituting the values of the PA and BE, we get,

[tex]6^2=(5+PE)(PE)[/tex]

Simplifying, we get,

[tex]36=5PE+PE^2[/tex]

Subtracting both sides of the equation by 36, we get,

[tex]0=-36+5PE+PE^2[/tex]

Switch sides, we get,

[tex]PE^2+5PE-36=0[/tex]

Solving this equation, we get,

[tex](PE+9)(PE-4)=0[/tex]

Equating each term equal to zero, we get,

[tex]PE+9=0[/tex] and [tex]PE-4=0[/tex]

Simplifying, we get,

[tex]PE=-9[/tex] and [tex]PE=4[/tex]

The value of PE cannot be negative.

Thus, the length of PE is 4.

Hence, Option A is the correct answer.

Answer:

its 4

Step-by-step explanation: