Write each expression in terms of sine and​ cosine, and then simplify so that no quotients appear in the final expression and all functions are of

theta

only.

StartFraction secant squared left parenthesis negative theta right parenthesis minus 1 Over 1 minus sine squared left parenthesis negative theta right parenthesis EndFraction

Respuesta :

Answer:

[tex]sec^2\theta\cdot tan^2\theta[/tex]

Step-by-step explanation:

Trigonometric Functions

There are some basic relations between the trigonometric functions that allow us to transform and conveniently manage them if many different ways. Some basic identities are:

[tex]sin^2\theta+cos^2\theta=1[/tex]

[tex]sin(-\theta)=-sin\theta[/tex]

[tex]cos(-\theta)=cos\theta[/tex]

[tex]\displaystyle sec\theta=\frac{1}{cos\theta}[/tex]

[tex]sec(-\theta)=sec\theta[/tex]

We are required to simplify the following expression:

[tex]\displaystyle \frac{sec^2(-\theta)-1}{1-sin^2(-\theta)}[/tex]

Transforming the negative arguments

[tex]\displaystyle \frac{sec^2\theta-1}{1-sin^2\theta}[/tex]

Transforming the secant into cosine

[tex]\displaystyle \frac{\frac{1}{cos^2\theta}-1}{1-sin^2\theta}[/tex]

Operating

[tex]\displaystyle \frac{1}{cos^2\theta}\cdot \frac{1-cos^2\theta}{1-sin^2\theta}[/tex]

Applying the basic identity in the numerator and denominator

[tex]\displaystyle \frac{1}{cos^2\theta}\cdot \frac{sin^2\theta}{cos^2\theta}[/tex]

Since

[tex]\displaystyle tan\theta=\frac{sin\theta}{cos\theta}[/tex]

[tex]\boxed{sec^2\theta\cdot tan^2\theta}[/tex]