[tex]\frac{32}{219x0.006488}[/tex]Answer:
The answer is 309MPa
Explanation:
It first become necessary to solve for the parameter Y for the conditions under which the fracture occurred using below equation
Y = δ[tex]\frac{kic}{δ\sqrt{\pia} }[/tex][tex]\pi a[/tex]
= [tex]\frac{32}{219\sqrt{\pi }\frac{2.68x10^-3}{2} }[/tex]
=[tex]\frac{32}{219\sqrt{0.00421} }[/tex]
= [tex]\frac{32}{219*0.06488}[/tex]
[tex]\frac{32}{14.2097} =2.25[/tex]
[tex]\frac{Kic}{y\sqrt{\pia } }[/tex][tex]\pi[/tex]a = [tex]\frac{32}{2.25\sqrt{\pi \frac{1.34*10^-3}{2} } }[/tex]
[tex]\frac{32}{2.25\sqrt{\pi*0.00067 } }[/tex]
=[tex]\frac{32}{2.25\sqrt{0.00211} }[/tex]
= [tex]\frac{32}{2.25 * 0.0459}[/tex] = [tex]\frac{32}{0.1034}[/tex]
= 309MPa