A household refrigerator that has a power input of 450 W and a COP of 1.5 is to cool 5 large watermelons, 10 kg each, to 8 C. If the watermelons are initially at 28 C, determine how long it will take for the refrigerator to cool them.

Respuesta :

Answer:

[tex]\Delta t = 5866.667\,s\,(97.778\,m)[/tex]

Explanation:

The specific heat for watermelon above freezing point is [tex]3.96\,\frac{kJ}{kg\cdot K}[/tex]. The heat liberated by the watermelon to cool down to 8°C is:

[tex]Q_{cooling} = (5)\cdot (10\,kg)\cdot (3.96\,\frac{kJ}{kg\cdot K} )\cdot (20\,K)[/tex]

[tex]Q_{cooling} = 3960\,kJ[/tex]

The heat absorbed by the household refrigerator is:

[tex]\dot Q_{L} = COP\cdot \dot W_{e}[/tex]

[tex]\dot Q_{L} = 1.5\cdot (0.45\,kW)[/tex]

[tex]\dot Q_{L} = 0.675\,kW[/tex]

Time needed to cool the watermelons is:

[tex]\Delta t = \frac{Q_{cooling}}{\dot Q_{L}}[/tex]

[tex]\Delta t = \frac{3960\,kJ}{0.675\,kW}[/tex]

[tex]\Delta t = 5866.667\,s\,(97.778\,m)[/tex]