One kilogram of air, initially at 5 bar, 350 K, and 3 kg of carbon dioxide (CO2), initially at 2 bar, 450 K, are confined to opposite sides of a rigid, well-insulated container. The partition is free to move and allows conduction from one gas to the other without energy storage in the partition itself. The air and carbon dioxide each behave as ideal gases.
Determine the final equilibrium temperature, in K, and the final pressure, in bar, assuming constant specific heats.

Respuesta :

Answer:

Check the explanation

Explanation:

Energy alance of 2 closed systems: Heat from CO2 equals the heat that is added to air in

[tex]m_{a} c_{v,a}(T_{eq} -T_{a,i)} =m_{co2} c_{v,co2} (T_{co2,i} -T_{eq)}[/tex]

1x0.723x[tex](T_{eq} -350)[/tex]=3x0.780x[tex](450-T_{eq} )[/tex] ⇒[tex]T_{eq}[/tex] = 426.4 °K

The initail volumes of the gases can be determined by the ideal gas equation of state,

[tex]V_{a,i} = \frac{mRT_{a,i} }{P_{a,i} }[/tex]=  [tex]\frac{1x (8.314 28.97 kJ kg • °K)x 350°K}{5 bar x 100KPa bar}[/tex] = 0.201[tex]m^{3}[/tex]

The equilibrium pressure of the gases can also be obtained by the ideal gas equation

[tex]P_{eq=\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,eq}+V_{CO2,eq)} } =\frac{(m_{a}R_{a}T_{eq})+(m_{a}R_{a}T_{eq} ) }{(V_{a,i}+V_{CO2,i)} }[/tex]

[tex]P_{eq}[/tex]= 1x(8.314 28.97)x426.4+3x(8.314 44)x426.4

                             (0.201+1.275)

= 246.67 KPa = 2.47 bar