A random variable is normally distributed with a mean of 25 and a standard deviation of 5. If an observation is randomly selected from the distribution, what value will be exceeded 85% of the time

Respuesta :

Answer:

Value of 26.93 will be exceeded 85% of the time.

Step-by-step explanation:

We are given that a random variable is normally distributed with a mean of 25 and a standard deviation of 5.

Let X = a random variable

So, X ~ N([tex]\mu=25,\sigma^{2} =5^{2}[/tex])

The z score probability distribution is given by;

            Z = [tex]\frac{X-\mu}{\sigma}[/tex] ~ N(0,1)

where, [tex]\mu[/tex] = population mean

            [tex]\sigma[/tex] = standard deviation

Now, we have to find that value which will be exceeded 85% of the time, i.e.;

        P(X > [tex]x[/tex]) = 0.85

    1 - P(X [tex]\leq x[/tex]) = 0.85

         P(X [tex]\leq x[/tex]) = 0.15

         P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq \frac{x-25}{5}[/tex] ) = 0.15

         P(Z [tex]\leq \frac{x-25}{5}[/tex] ) = 0.15

Now, in the z table the critical value of [tex]x[/tex] whose less than area is 0.15 is given as 0.3853, i.e;

                 [tex]\frac{x-25}{5}[/tex] = 0.3853

                 [tex]x-25=0.3853 \times 5[/tex]

                    [tex]x[/tex] = 25 + 1.9265 = 26.93

Therefore, value of 26.93 will be exceeded 85% of the time.