Respuesta :
Answer:
sin(θ) = sin(θ + 2π) = -sin(-θ)
b and d
This can be shown by substituting a value for θ
sin(π ÷ 3) = 1/2
sin(π ÷ 3 + 2π) = 1/2
-sin(π ÷ 3) = -1/2
-sin(-π ÷ 3) = 1/2
sin(π ÷ 3 + π ÷ 2) = √3/2
The trigonometric functions that are equivalent to sin (theta) are:
(b) sin(theta +2pi)
(d) -sin(-theta)
What are trigonometric function?
"Trigonometric functions are the functions which denote the relationship between angle and sides of a right-angled triangle."
Compound angle formula:
sin(A + B) = sin(A)cos(B) + cos(A)sin(B)
For given question,
we need to find the trigonometric functions are equivalent to sin (theta).
We know,
a) sin(-theta) = -sin(theta)
sin(-theta) ≠ sin(theta)
b) sin(theta +2pi)
Using compound angle formula,
sin(theta +2pi)
= sin(theta)cos(2π) + cos(theta)sin(2π)
= sin(theta) (1) + cos(theta) (0)
= sin(theta) + 0
= sin(theta)
Therefore, sin(theta +2pi) = sin(theta)
c) -sin(theta) ≠ sin(theta)
d) -sin(-theta)
= -[-sin(theta)]
= sin(theta)
Therefore, -sin(-theta) = sin(theta)
e) sin(theta + pi/2)
Using compound angle formula,
sin(theta + pi/2)
= sin(theta) cos(π/2) + cos(theta)sin(π/2)
= sin(theta)(0) + cos(theta) (1)
= 0 + cos(theta)
= cos(theta)
≠ sin(theta)
Therefore, the trigonometric functions that are equivalent to sin (theta) are:
(b) sin(theta +2pi)
(d) -sin(-theta)
Learn more about trigonometric functions here:
https://brainly.com/question/14746686
#SPJ2