Determine a formula for the magnitude of the force F exerted on the large block (Mc) so that the mass Ma does not move relative to Mc. Ignore all friction. Assume Mb does not make contact with Mc.

Respuesta :

Answer:

The magnitude of the force F is given by

F =  ([tex]M_{a}[/tex] + [tex]M_{b}[/tex] + [tex]M_{c}[/tex] ) *([tex]M_{b}[/tex]*g/([tex]\sqrt{M_{a} ^{2}-M_{b} ^{2}}[/tex]))

Explanation:

Given there are three blocks of masses [tex]M_{a}[/tex], [tex]M_{b}[/tex] and [tex]M_{c}[/tex] (ref image in attachment)

When all three masses move together at an acceleration a, the force F is given by

F =  ([tex]M_{a}[/tex] + [tex]M_{b}[/tex] + [tex]M_{c}[/tex] ) *a    ................(equation 1)

Also it is given that [tex]M_{a}[/tex] does not move with respect to [tex]M_{c}[/tex], which gives tension T  is exerted on pulley  by [tex]M_{a}[/tex] only, Hence tension T is

T = [tex]M_{a}[/tex] *a    ..........(equation 2)

There is also also tension exerted by [tex]M_{b}[/tex]. There are two components here: horizontal due to acceleration a and vertical component due to gravity g. Thus tension is given by

T = [tex]M_{b}[/tex] [tex]\sqrt{a^{2} +g^{2} }[/tex]   ................(equation 3)

From equation 2 and 3, we get

[tex]M_{a}[/tex] *a  = [tex]M_{b}[/tex] [tex]\sqrt{a^{2} +g^{2} }[/tex]  

Squaring both sides we get

[tex]M_{a} ^{2}[/tex] *[tex]a^{2}[/tex] = [tex]M_{b} ^{2}[/tex] * ([tex]a^{2}[/tex]+[tex]g^{2}[/tex])

[tex]M_{a} ^{2}[/tex] *[tex]a^{2}[/tex] = ([tex]M_{b} ^{2}[/tex] * [tex]a^{2}[/tex])+ ([tex]M_{b} ^{2}[/tex] *[tex]g^{2}[/tex])

([tex]M_{a} ^{2}[/tex]  -  [tex]M_{b} ^{2}[/tex]) * [tex]a^{2}[/tex] = [tex]M_{b} ^{2}[/tex] *[tex]g^{2}[/tex]

[tex]a^{2}[/tex] = [tex]M_{b} ^{2}[/tex] *[tex]g^{2}[/tex]/([tex]M_{a} ^{2}[/tex]  -  [tex]M_{b} ^{2}[/tex])

Taking square root on both sides, we get acceleration a

a = [tex]M_{b}[/tex]*g/([tex]\sqrt{M_{a} ^{2}-M_{b} ^{2}}[/tex])

Hence substituting the value of a in equation 1, we get

F =  ([tex]M_{a}[/tex] + [tex]M_{b}[/tex] + [tex]M_{c}[/tex] ) *([tex]M_{b}[/tex]*g/([tex]\sqrt{M_{a} ^{2}-M_{b} ^{2}}[/tex]))

Ver imagen thamimspartan