Answer:
[tex]1652w-1652[/tex] is equivalent to [tex]\left(2w-2\right)\left(826\right)[/tex]
In other words:
[tex]\left(2w-2\right)\left(826\right)=\:1652w-1652[/tex]
Step-by-step explanation:
Considering the expression
[tex]\left(2w-2\right)\left(826\right)[/tex]
solving
[tex]\left(2w-2\right)\left(826\right)[/tex]
[tex]=\left(826\right)\left(2w-2\right)[/tex]
[tex]\mathrm{Apply\:the\:distributive\:law}:\quad \:a\left(b-c\right)=ab-ac[/tex]
[tex]a=\left(826\right),\:b=2w,\:c=2[/tex]
[tex]=\left(826\right)\cdot \:2w-\left(826\right)\cdot \:2[/tex]
[tex]=826\cdot \:2w-826\cdot \:2[/tex]
[tex]=1652w-1652[/tex]
Therefore,
[tex]1652w-1652[/tex] is equivalent to [tex]\left(2w-2\right)\left(826\right)[/tex]
In other words:
[tex]\left(2w-2\right)\left(826\right)=\:1652w-1652[/tex]