Answer:
The answer to your question is the letter A. 30 units
Step-by-step explanation:
Data
P (-5, 1)
Q (3, 7)
R (6, 3)
S (-2, -3)
Process
1.- Find the distance from P-Q, Q-R, R-S, and P-S
dPQ = [tex]\sqrt{(3 + 5)^{2}+ (7 - 1)^{2}}[/tex]
dPQ = [tex]\sqrt{8^{2} + 6^{2}}[/tex]
dPQ = [tex]\sqrt{64 + 36}[/tex]
dPQ = [tex]\sqrt{100}[/tex]
dPQ = 10 units
dQR = [tex]\sqrt{(6 - 3)^{2} + (3 - 7)^{2}}[/tex]
dQR = [tex]\sqrt{3^{2} + 4^{2}}[/tex]
dQR = [tex]\sqrt{9 + 16}[/tex]
dQR = [tex]\sqrt{25}[/tex]
dQR = 5 units
dRS = [tex]\sqrt{(-2- 6)^{2}+ (-3 - 3)^{2}}[/tex]
dRS = [tex]\sqrt{-8^{2} - 6^{2}}[/tex]
dRS = [tex]\sqrt{64 + 36}[/tex]
dRS = [tex]\sqrt{100}[/tex]
dRS = 10 units
dPS = [tex]\sqrt{(-2+ 5)^{2}+ (-3 - 1)^{2}}[/tex]
dPS = [tex]\sqrt{3^{2} - 4^{2}}[/tex]
dPS = [tex]\sqrt{9 + 16}[/tex]
dPS = [tex]\sqrt{25}[/tex]
dPS = 5 units
2.- Calculate the Perimeter
Perimeter = 10 + 5 + 10 + 5
= 30 units