What is the perimeter of the quadrilateral formed by joining the points P(-5, 1), Q(3, 7), R(6, 3), and S(-2, -3)?

A. 30 Units
B. [tex]2\sqrt{17}+\sqrt{181}+4+\sqrt{53} units[/tex]
C. 42 Units
D. [tex]2\sqrt{13}+5+\sqrt{10} +\sqrt{37} units[/tex]

Respuesta :

Answer:

The answer to your question is the letter A. 30 units

Step-by-step explanation:

Data

P (-5, 1)

Q (3, 7)

R (6, 3)

S (-2, -3)

Process

1.- Find the distance from P-Q, Q-R, R-S, and P-S

dPQ = [tex]\sqrt{(3 + 5)^{2}+ (7 - 1)^{2}}[/tex]

dPQ = [tex]\sqrt{8^{2} + 6^{2}}[/tex]

dPQ = [tex]\sqrt{64 + 36}[/tex]

dPQ = [tex]\sqrt{100}[/tex]

dPQ = 10 units

dQR = [tex]\sqrt{(6 - 3)^{2} + (3 - 7)^{2}}[/tex]

dQR = [tex]\sqrt{3^{2} + 4^{2}}[/tex]

dQR = [tex]\sqrt{9 + 16}[/tex]

dQR = [tex]\sqrt{25}[/tex]

dQR = 5 units

dRS = [tex]\sqrt{(-2- 6)^{2}+ (-3 - 3)^{2}}[/tex]

dRS = [tex]\sqrt{-8^{2} - 6^{2}}[/tex]

dRS = [tex]\sqrt{64 + 36}[/tex]

dRS = [tex]\sqrt{100}[/tex]

dRS = 10 units

dPS = [tex]\sqrt{(-2+ 5)^{2}+ (-3 - 1)^{2}}[/tex]

dPS = [tex]\sqrt{3^{2} - 4^{2}}[/tex]

dPS = [tex]\sqrt{9 + 16}[/tex]

dPS = [tex]\sqrt{25}[/tex]

dPS = 5 units

2.- Calculate the Perimeter

Perimeter = 10 + 5 + 10 + 5

               = 30 units