You have a wire that is 20 cm long. You wish to cut it into two pieces. One piece will be bent into the shape of a square. The other piece will be bent into the shape of a circle. Let A represent the total area of the square and the circle. What is the circumference of the circle when A is a minimum

Respuesta :

Answer:

Therefore the circumference of the circle is [tex]=\frac{20\pi}{4+\pi}[/tex]

Step-by-step explanation:

Let the side of the square be s

and the radius of the circle be r

The perimeter of the square is = 4s

The circumference of the circle is =2πr

Given that the length of the wire is 20 cm.

According to the problem,

4s + 2πr =20

⇒2s+πr =10

[tex]\Rightarrow s=\frac{10-\pi r}{2}[/tex]

The area of the circle is = πr²

The area of the square is = s²

A represent the total area of the square and circle.

A=πr²+s²

Putting the value of s

[tex]A=\pi r^2+ (\frac{10-\pi r}{2})^2[/tex]

[tex]\Rightarrow A= \pi r^2+(\frac{10}{2})^2-2.\frac{10}{2}.\frac{\pi r}{2}+ (\frac{\pi r}{2})^2[/tex]

[tex]\Rightarrow A=\pi r^2 +25-5 \pi r +\frac{\pi^2r^2}{4}[/tex]

[tex]\Rightarrow A=\pi r^2\frac{4+\pi}{4} -5\pi r +25[/tex]

For maximum or minimum [tex]\frac{dA}{dr}=0[/tex]

Differentiating with respect to r

[tex]\frac{dA}{dr}= \frac{2\pi r(4+\pi)}{4} -5\pi[/tex]

Again differentiating with respect to r

[tex]\frac{d^2A}{dr^2}=\frac{2\pi (4+\pi)}{4}[/tex]    > 0

For maximum or minimum

[tex]\frac{dA}{dr}=0[/tex]

[tex]\Rightarrow \frac{2\pi r(4+\pi)}{4} -5\pi=0[/tex]

[tex]\Rightarrow r = \frac{10\pi }{\pi(4+\pi)}[/tex]

[tex]\Rightarrow r=\frac{10}{4+\pi}[/tex]

[tex]\frac{d^2A}{dr^2}|_{ r=\frac{10}{4+\pi}}=\frac{2\pi (4+\pi)}{4}>0[/tex]

Therefore at [tex]r=\frac{10}{4+\pi}[/tex]  , A is minimum.

Therefore the circumference of the circle is

[tex]=2 \pi \frac{10}{4+\pi}[/tex]

[tex]=\frac{20\pi}{4+\pi}[/tex]