Answer:
[tex](a)F_{max}=588N\\(b)acceleration=1.96m/s^2[/tex]
Explanation:
Given data
Mass m=120.0 kg
Coefficient of static friction [tex]u_{k}=0.500[/tex]
The coefficient of sliding friction [tex]u_{d}=0.300[/tex]
For Part (a) Maximum force
According to Newtons second law the net force aced on the body is given by
[tex]F_{net}=ma=F_{max}-f_{stat}=0\\so\\F_{max}=f_{stat}[/tex]
The friction force is given by
[tex]f_{stat}=u_{stat}*N\\f_{stat}=0.5*(9.8*120)\\f_{stat}=588N[/tex]
Conclude that
[tex]F_{max}=f_{stat}=588N[/tex]
For Part (b) Acceleration
The acceleration due to dynamic friction is given by:
[tex]ma=F_{max}-f_{dyn}[/tex]
The dynamic friction is given by:
[tex]f_{dyn}=u_{dyn}*N\\f_{dyn}=0.300*(9.8*120)\\f_{dyn}=353N[/tex]
So the acceleration given by
[tex]a=\frac{F_{max}-f_{dyn}}{m}\\ a=\frac{588N-353N}{120kg}\\ a=1.96m/s^2[/tex]