Respuesta :

Answer:

 £4116.

Step-by-step explanation:

Each year the car is worth (100-30) =   70% or 0.70 of its worth the previous year.

At the start of 2017 the car was 3 years old.

The equation to work out its value  is

V = A(0.70)^t      where A is  12,000, t = the number of years.

So we have, at the start of 2017:

V = 12,000 (0.70)^3

= £4116.

Answer:

[tex]The~ value ~of ~his~ car~ at~ the ~start~ of~ 2017~ is~ $4116.[/tex]

Step-by-step explanation:

→ [tex]We~know~that:[/tex]

[tex]The ~worth~ of ~car ~at~ the~ start~ of ~2014 = $12000[/tex]

[tex]The~ value~ of~ the~ car~ decreased ~30[/tex]% [tex]every ~year.[/tex]

→ [tex]At ~the~start ~of~ 2015:[/tex]

[tex]30[/tex]% [tex]of~ 12000 = \frac{30}{100} \times 12000[/tex]

[tex]=3,600[/tex]

[tex]So,~ the~ value~ of~ the ~car~ at ~start~ of~ 2015 ~= 12000-3600 =[/tex] $[tex]8,400[/tex]

→ [tex]Now,~at~the~ start~ of~ 2016:[/tex]

[tex]30[/tex]% [tex]of~ 8400 = \frac{30}{100} \times 8400[/tex]

[tex]= 2,520[/tex]

[tex]So, ~the ~value ~of ~the ~car ~at ~start~ of ~2016 = 8400-2520 =[/tex] $[tex]5,880.[/tex]

→ [tex]And~at~start~ of~ 2017:[/tex]

[tex]30[/tex]% [tex]of ~5880 = \frac{30}{100} \times 5880[/tex]

[tex]=1,764[/tex]

[tex]So,~ the~ value~ of ~the~ car~ at~ start~ of ~2017 = 5880-1764 =[/tex] $[tex]4,116.[/tex]

→ [tex]Thus,~the~ value~ of ~his~ car ~at ~the ~start~ of~ 2017~ is~[/tex] $[tex]4,116.[/tex]

[tex]Hope~my~answer~helps![/tex]

[tex]-Isabelle~Williams[/tex]