Circle with Center (-1,2) and radius 5 goes through the line x+4y=0 in the dots A and B. Calculate the length of AB

Respuesta :

Answer:

[tex]4\sqrt{1598}[/tex]

Step-by-step explanation:

distance center (–1, 2) to line x + 4y = 0 is

[tex]d=\frac{-1+4(2)}{\sqrt{1^2+4^2}}=\frac{7}{17}\sqrt{17}[/tex]

by using Pythagorean's Theorem, we get

[tex]AB=2\sqrt{r^2-d^2}\\

=2\sqrt{25-\frac{49}{17}}\\

=4\sqrt{1598}[/tex]

From the line equation, we can deduce

[tex]x=-4y[/tex]

This implies that any point on the line can be written as

[tex](-4y,y),\quad y \in \mathbb{R}[/tex]

So, given any two points

[tex]A=(-4y_1,y_1),\quad B=(-4y_2,y_2)[/tex]

their distance will be

[tex]AB=\sqrt{(-4y_1+4y_2)^2+(y_1-y_2)^2}=\sqrt{17(y_1-y_2)^2}=\sqrt{17}|y_1-y_2|[/tex]

So, we can compute the distance between two points on the line just by knowing their y coordinates!

Now, the equation of a circle with center [tex](-1,2)[/tex] and radius 5 is

[tex](x+1)^2+(y-2)^2=5^2[/tex]

which we can reform as

[tex]x^2 + y^2 + 2 x - 4 y - 20 = 0[/tex]

The points of intersection between the circle and the line are given by the system between the two equations:

[tex]\begin{cases}x^2 + y^2 + 2 x - 4 y - 20 = 0\\x+4y=0\end{cases}[/tex]

From the second equation we can deduce [tex]x=-4y[/tex]. Plugging this value in the first equation yields

[tex](-4y)^2 + y^2 + 2 (-4y) - 4 y - 20 = 0 \iff 17y^2-12y-20=0[/tex]

Solving this equation for [tex]y[/tex] yields

[tex]y=\dfrac{12\pm\sqrt{144+1360}}{34}=\dfrac{12\pm\sqrt{1504}}{34}=\dfrac{12\pm\sqrt{16\cdot 94}}{34}=\dfrac{12\pm4\sqrt{94}}{34}=\dfrac{6\pm2\sqrt{94}}{17}[/tex]

Now we have the two [tex]y[/tex] values

[tex]y_1=\dfrac{6+2\sqrt{94}}{17},\quad y_2=\dfrac{6-2\sqrt{94}}{17}[/tex]

Which implies that the distance length of AB is

[tex]AB=\sqrt{17}|y_1-y_2|=\sqrt{17}\cdot\dfrac{4\sqrt{94}}{17}=4\sqrt{\dfrac{94}{17}}[/tex]