Respuesta :

Answer:

[tex]cos(\alpha+\beta)=\frac{33}{65}[/tex]

Step-by-step explanation:

step 1

Find cos α

we know that

[tex]tan^2(\alpha)+1=sec^2(\alpha)[/tex]

we have

[tex]tan(\alpha)=-\frac{12}{5}[/tex]

substitute

[tex](-\frac{12}{5})^2+1=sec^2(\alpha)[/tex]

[tex]sec^2(\alpha)=\frac{144}{25}+1[/tex]

[tex]sec^2(\alpha)=\frac{169}{25}[/tex]

[tex]sec(\alpha)=\pm\frac{13}{5}[/tex]

Remember that Angle α lies in quadrant II

so

sec α is negative

[tex]sec(\alpha)=-\frac{13}{5}[/tex]

Find the value of cos α

[tex]cos)\alpha)=\frac{1}{sec(\alpha)}[/tex]

so

[tex]cos(\alpha)=-\frac{5}{13}[/tex]

step 2

Find sin α

we know that

[tex]tan(\alpha)=\frac{sin(\alpha)}{cos(\alpha)}[/tex]

[tex]sin(\alpha)=tan(\alpha)cos(\alpha)[/tex]

we have

[tex]tan(\alpha)=-\frac{12}{5}[/tex]

[tex]cos(\alpha)=-\frac{5}{13}[/tex]

substitute

[tex]sin(\alpha)=(-\frac{12}{5})(-\frac{5}{13})[/tex]

[tex]sin(\alpha)=\frac{12}{13}[/tex]

step 3

Find sin β

we know that

[tex]sin^2(\beta)+cos^2(\beta)=1[/tex]

we have

[tex]cos(\beta)=\frac{3}{5}[/tex]

substitute

[tex]sin^2(\beta)+(\frac{3}{5})^2=1[/tex]

[tex]sin^2(\beta)=1-(\frac{3}{5})^2[/tex]

[tex]sin^2(\beta)=1-\frac{9}{25}[/tex]

[tex]sin^2(\beta)=\frac{16}{25}[/tex]

[tex]sin(\beta)=\pm\frac{4}{5}[/tex]

Remember that

Angle β lies in quadrant IV

so

sin β is negative

[tex]sin(\beta)=-\frac{4}{5}[/tex]

step 4

Find cos(α−β)

we know that

[tex]cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)[/tex]

we have

[tex]cos(\alpha)=-\frac{5}{13}[/tex]

[tex]cos(\beta)=\frac{3}{5}[/tex]

[tex]sin(\alpha)=\frac{12}{13}[/tex]

[tex]sin(\beta)=-\frac{4}{5}[/tex]

substitute the given values

[tex]cos(\alpha+\beta)=(-\frac{5}{13})(\frac{3}{5})-(\frac{12}{13})(-\frac{4}{5})[/tex]

[tex]cos(\alpha+\beta)=(-\frac{15}{65})+(\frac{48}{65})[/tex]

[tex]cos(\alpha+\beta)=\frac{33}{65}[/tex]

lizzyz

Answer: Your welcome

Step-by-step explanation: I took the test

Ver imagen lizzyz